A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment.

نویسندگان

  • Dennis B Pacardo
  • Bhanu Neupane
  • S Michaela Rikard
  • Yue Lu
  • Ran Mo
  • Sumeet R Mishra
  • Joseph B Tracy
  • Gufeng Wang
  • Frances S Ligler
  • Zhen Gu
چکیده

A multifunctional gold nanorod (AuNR) complex is described with potential utility for theranostic anticancer treatment. The AuNR was functionalized with cyclodextrin for encapsulation of doxorubicin, with folic acid for targeting, and with a photo-responsive dextran-azo compound for intracellular controlled drug release. The interaction of a AuNR complex with HeLa cells was facilitated via a folic acid targeting ligand as displayed in the dark-field images of cells. Enhanced anticancer efficacy was demonstrated through the synergistic combination of promoted drug release upon ultraviolet (UV) light irradiation and photothermal therapy upon infrared (IR) irradiation. This multifunctional AuNR-based system represents a novel theranostic strategy for spatiotemporal delivery of anticancer therapeutics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gold nanorod/Fe3O4 nanoparticle "nano-pearl-necklaces" for simultaneous targeting, dual-mode imaging, and photothermal ablation of cancer cells.

Gold and pearls: Multifunctional nanoparticles, each composed of a single, amine-modified gold nanorod, decorated with multiple "pearls" of Fe(3)O(4) nanoparticles capped with carboxy groups, are prepared. Their effectiveness in simultaneous targeting, dual-mode imaging, and photothermal ablation of breast cancer cells is demonstrated.

متن کامل

Synergistic Cytotoxic Effect of Gold Nanoparticles and 5-Aminolevulinic Acid-Mediated Photodynamic Therapy against Skin Cancer Cells

Background: Photodynamic therapy (PDT) is a promising therapeutic modality for the treatment of cancer and other diseases. In this study, the epidermoid carcinoma cell line A431 and the normal fibroblasts were used to investigate whether gold nanoparticles (GNPs) can induce an increase in cell death during PDT using 5-aminolevulinic acid (5-ALA) as a photosensitizer.Methods: Human fibroblast an...

متن کامل

Synergistic switching of plasmonic resonances and molecular spin states.

Plasmonic resonance properties of a series of lithographically patterned gold nanorod arrays, spin coated by thin films of an iron(II)-triazole type spin crossover complex, were investigated upon heating/cooling and also under 633 nm laser irradiation. In both cases a reversible shift of the localised surface plasmon resonance wavelength was observed and quantitatively linked to the refractive ...

متن کامل

Two-photon luminescence properties of gold nanorods

Gold nanorods can be internalized by macrophages (an important early cellular marker in atherosclerosis and cancer) and used as an imaging contrast agent for macrophage targeting. Objective of this study is to compare two-photon luminescence (TPL) properties of four aspect ratios of gold nanorods with surface plasmon resonance at 700, 756, 844 and 1060 nm respectively. TPL from single nanorods ...

متن کامل

Investigating the synergistic effects of gold nanoparticles and electroporation in sensitization of human intestinal colon cancer HT-29 cells to 6MV photon beam

Introduction: Radiation therapy (RT) is the gold standard treatment for more than half of known tumors. There is increasing evidence that combining radiation therapy with a radiosensitizer can enhance the efficiency of this treatment modality. A radiosensitizer preferably enhances dose at the site of tumor and increases discrimination between tumor and normal surrounding tissue...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanoscale

دوره 7 28  شماره 

صفحات  -

تاریخ انتشار 2015